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Abstract—This paper aims to search for cyclic paths that vists 

every canteen, cafes, and the likes in the ITB Ganesha campus area 

using pathfinding algorithms, and examines their properties on 

graph modification. The graph constituting the canteens as 

vertices are connected by edges of variable weight that represents 

the walking distance between vertices. Of particular interest is 

finding the shortest path that visits all canteen in the campus area. 

This problem is analogous to the Travelling Salesman Problem. 

This paper will apply a brute force depth-first-search and Held-

Karp algorithm to find such paths.  

Keywords—travelling salesman problem; 

I.  INTRODUCTION 

The Institut Teknologi Bandung (ITB) Ganesha campus 
contains many establishments offering food and beverages. 
These establishments, which from here on we refer as canteen, 
may provide drinks, light snacks, to a full meal. These 
collections of canteen are scattered throughout the area, 
providing easy access to the general populace and visitors. The 
distribution of these establishments around the campus presents 
an opportunity for analysis of their logistical optimization. 

To analyze this problem from a computational perspective, 
the campus layout and its canteens can be formally modeled as 
a weighted undirected graph. In this model, each canteen is 
represented as a vertex (or node), and the walkable paths 
between them are represented as edges. The weight of each edge 
corresponds to the physical distance between two canteens, 
creating a network that accurately reflects the travel cost of 
moving between any two points. The challenge is, therefore, 
transforms a simple navigation task into a well-defined 
computational problem: finding the optimal tour of this graph. 

This paper will investigate this specific instance of the TSP 
by first identifying the locations of all canteens on the Ganesha 
campus. Subsequently, the walking distances between each pair 
of canteens will be measured as the waling distance. Following 
the data gathering and graph construction, we will implement 
and compare two distinct algorithmic approaches to solve this 
problem: a brute-force depth-first search, which guarantees 
optimality by exploring every possible path, and the more 
sophisticated Held-Karp algorithm, a dynamic programming 
approach that is significantly more efficient for a larger number 
of vertices. 

This paper will briefly explore on commonly used heuristics 
to solve similar problems. Additionally, we will examine a case 
of an addition of a node affects the optimal path.  

II. METHODOLOGY 

A. Considered canteen and all their locations 

There are a lot of places where food and beverage can be 
acquired in the campus area. These ranges from machines to 
fully fledged cafés. This paper will restrict the sample to several 
concentrated points, of which the distance between them will be 
measured. 

We exclude vending machines, automated coffee machines 
and other unmanned vendors from the sample. There a lot of 
such machines and these do not adequately represent the 
authentic ITB experience. A minimarket retail chain also opened 
their branch on campus. For similar reason, the author decides 
to exclude them as being not unique to the area. 

Several points are actually a group of canteens within the 
same location. This is done to massively simplify calculations; 
places that are located within the near vicinity of each other are 
represented as a single node. A place that are roughly within 50 
meters apart from another place in a group also belongs to the 
same group. 

With these constraints, 12 points are considered for the 
context of this paper: 

1. Kantin ATM Center 
2. Gedung Kuliah Umum Barat (GKUB) 
3. Kantin Labtek V 
4. Gedung Kuliah Umum Timur (GKUT) 
5. Eititu 
6. Community Center Barat (CC Barat) 
7. Tunas Padi 
8. Kantin Lab Biru 
9. Kantin CRCS 
10. Kantin SBM 
11. Kantin Timur 
12. Kantin Barrack 

Do note that this sample is biased with respect to the author’s 
knowledge and discretion. Should there be unmentioned places, 
it is to be understood that the author has no knowledge of their 
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existence. Nevertheless, the provided list should capture the 
essence of the daily culinary experience for the students. 

B. Gathering data on distances between canteens 

To model a tour that visits all canteens, there must be a path 
that connects each node to the others. Not all path are equal, 
since pairs of canteens may be further apart. For this reason, we 
will consider the graph of all canteens and their paths to be a 
weighted graph.  

There are several ways to model the distance between 
canteens. One may plot the nodes into a map and simply measure 
the euclidean distances as they are located on the map. This 
approach does not reflect accurately the actual distance travelled 
for a person that travels on foot. One may refine the calculated 
path to follow through roads as seen on available maps. 
However, it is questionable how accurate this approach can 
model pedestrian paths. In this paper, the weight of a path is 
measured as the distance travelled when walked on foot. 

Due to limited resource, it is not currently feasible to gather 
data on the distance between all possible pairs of canteens. In the 
data collection process, distance between canteens may not be 
measured directly if there is an intermediate location between 
the two. For a particular canteen, only the path to the several 
nearest canteens are measured. This turned out to be a 
commonly used heuristic when approximating an exact solution 
to similar problems. 

Between a pair of nodes, it is possible that there are multiple 
paths. In this case, we will only consider an edge that have the 
shortest distance among all paths that connect the same pair of 
nodes. The data collection process attempts to include only 
reasonable paths. 

C. Algorithm to search for the most optimal Hamiltonian tour 

on all canteens 

Based on the previous problem statements, the task of 
finding a cycle that visits all canteens with the smallest total 
distance is analogous to the Travelling Salesman Problem. There 
is a few exact algorithms that solve it. Exact algorithms include 
a brute-force method and the Held-Karp algorithm which 
employs dynamic programming techniques. This paper will 
employ both algorithms, to demonstrate the effects of tabulation 
on time complexity. 

Both of the mentioned algorithms run in exponential time 
with the brute force method being superexponential. For more 
than a dozen of nodes, the brute force method runs in an 
unreasoable time which will be shown in the results section. In 
practice, algorithms that employ heuristics quickly yield 
solution close to the exact optimal solution [1].  

The brute-force algorithm has a time complexity of 𝑂(𝑛!). 
The brute-force algorithm is equivalent to generating all 
permutations of nodes, testing for the distance of a path in the 

 
Fig 1. Marked map showing each locations of canteens as 

numbered in the previous list. 
 

Fig 2. Labelled weighted graph of the canteens. Weight of 

each edge is measured as walking distance between inciding 

nodes in meters. Edges are not drawn to reflect actual 

pedestrian path 
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order of each permutation. The Held-Karp algorithm, which uses 
memoization, has a time complexity of 𝑂(𝑛22𝑛). [2] 

To search for the optimal tour, there need to be a slight 
modification on the graph. Due to the limited data, not all pairs 
of nodes have an edge that coincides with them; the graph is not 
complete. The Travelling Salesman Problem traditionally 
assume a complete graph. To addresss this problem, one may (1) 
assign an arbitrarily large weighted edges to complete the graph, 
or (2) synthetically construct an edge by searching the 
incomplete graph for the shortest path between unconnected 
nodes. We will see that neither choice should affect the resulting 
optimal tour. 

III. IMPLEMENTATION 

Two exact algorithms will be employed to solve the 
Travelling Salesman Problem. The first is a brute force method 
by a complete depth-first search of the graph. The search will go 
on to all nodes, keeping track of nodes that are already in the 
path. Also note that the graph is represented as a symmetric 
square matrix. 

def tsp_brute_force(graph, start, visited=None, 
path=None, current_cost=0, best_path=None, 
min_cost=float('inf')) -> tuple[list[int], int]: 
    if visited is None: 
        visited = {start} 
    if path is None: 
        path = [start] 

     if len(visited) == len(graph): 
     # Return to the starting node to complete the 

tour 
     final_cost = current_cost + 

graph[start][path[0]] 
     if final_cost < min_cost: 
         return path + [path[0]], final_cost 
     return best_path, min_cost 
 

    for neighbor in range(len(graph)): 
        if neighbor not in visited: 
            visited.add(neighbor) 
            path.append(neighbor) 

             
            best_path, min_cost = tsp_brute_force( 

             graph, 
                neighbor, 
                visited, 
                path, 
                current_cost + graph[start][neighbor], 
                best_path, 
                min_cost 
            ) 
            path.pop() 
            visited.remove(neighbor) 
 
    return best_path, min_cost 

 The second, more efficient exact algorithm is the Held-Karp 
algorithm, a classic dynamic programming approach. Instead of 
building and evaluating one complete path at a time, the Held-
Karp algorithm solves the problem by iteratively building up 
solutions to smaller subproblems. It defines a subproblem as 
finding the shortest path from a starting node to a different 
destination node k, visiting a specific subset of intermediate 
nodes S. It reuses stored result of subproblems to prevent 
unneeded computation.  

def tsp_held_karp(graph, start=0): 
    """ 

    Solves the Traveling Salesman Problem using Held-
Karp, a DP algorithm, and reconstructs the path. 
    """ 
    n = len(graph) 
     
    # Memo table 
    # memo stores the minimum cost for a given state 
(mask, pos) 
    memo = {} 
 
    # path_memo stores the next city to visit to 
achieve that minimum cost 
    path_memo = {} 
 
    def held_karp(mask, pos): 
    # Base case: if all cities are visited, return to 
the starting node 
        if mask == (1 << n) - 1: 
            return graph[pos][start] 
 
        # If this subproblem is already solved, return 
the stored result 
        if (mask, pos) in memo: 
            return memo[(mask, pos)] 
 
        min_cost = float('inf') 
        best_next_city = -1 
 
        # Iterate over all possible next cities 
        for next_city in range(n): 
            # If the city has not been visited yet 
            if not (mask & (1 << next_city)): 
                # Calculate the cost of going to the 
next city and then solving the rest of the tour 
                new_cost = graph[pos][next_city] + 
held_karp(mask | (1 << next_city), next_city) 
 
                if new_cost < min_cost: 
                    min_cost = new_cost 
                    best_next_city = next_city 
         
        memo[(mask, pos)] = min_cost 
        path_memo[(mask, pos)] = best_next_city 
         
        return min_cost 
 
    # Calculate the minimum cost of the tour starting 
from start 
    min_tour_cost = held_karp(1 << start, start) 
 
    path = [] 
    current_mask = 1 << start 
    current_node = start 
     
    # Follow the path_memo to rebuild the tour 
    for _ in range(n - 1): 
        path.append(current_node) 
        next_node = path_memo[(current_mask, 
current_node)] 
        current_mask |= (1 << next_node) 
        current_node = next_node 
     
    path.append(current_node) 
    path.append(start) 

 
    return path, min_tour_cost 

 Additionally, since the data collected does not result in a 
complete graph, a method to synthetically construct incomplete 
edges is needed. This code is used to fill in the edges to make a 
complete graph. The weight of an edge that coincides a pair tof 
nodes is equal to the distance of the shortest path between them 
in the original graph. 
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def construct_incomplete_edge(graph: list[list[int]]) -
> None: 
    """ 
    Constructs incomplete edges for the graph by 
searching for shortest path. 
    """ 
 
    def find_shortest_path_cost(start: int, end: int) -
> int: 
        # UCS algorithm 
        queue = [(0, start)]  # (cost, node) 
        visited = dict() 
         
        while queue: 
            current_cost, current_node = 
heapq.heappop(queue) 
 
            if current_node in visited and 
visited[current_node] <= current_cost: 
                continue 
 
            visited[current_node] = current_cost 
 
            if current_node == end: 
                return current_cost 
 
            for neighbor, edge_cost in 
enumerate(graph[current_node]): 
                if edge_cost > 0: 
                    new_cost = current_cost + edge_cost 
                    if neighbor not in visited or 
new_cost < visited[neighbor]: 
                        heapq.heappush(queue, 
(new_cost, neighbor)) 
 
        return visited.get(end, float('inf')) 
 
    for i in range(len(graph)): 
        for j in range(i + 1, len(graph)): 
            if graph[i][j] == -1 and graph[j][i] == -1: 
                cost = find_shortest_path_cost(i, j) 
                graph[i][j] = cost 
                graph[j][i] = cost 
     
    return 

 All code and data is available in a GitHub repository linked 
in the appendix. 

IV. RESULT AND ANALYSYS 

A. Shortest tour that visits all canteens 

First we compute the optimal tour using the brute force 

algorithm. Incomplete edges in the graph is filled with weight 

10000. 

Then, with the same input using the Held-Karp algorithm: 

 
Fig. Result using Held-Karp algorithm which agrees with the 

brute-force algorithm. 

Both of the algorithms used above always produce the same 

result. But it can be seen that Held-Karp massively outperforms 

the brute-force method even though both of them are 

exponential algorithms. These algorithms are still impractical 

for large graph however. For comparison, the Held-Karp 

algorithm crosses one minute of computation time on a graph 

of 21 nodes. 

 
Fig 4. The time taken for Held-Karp algorithm to find an 

optimal cycle. The brute-force algorithm took over one 

minute for a graph with 12 nodes. 

Previously the complete graph is generated by fiiling 

missing edges with a predetermined weight. By choosing an 

extremely large weight, it discourages the search process to 

include such edges. If a hamiltonian circuit exist for the 

original graph, the optimal path will never include the filled 

in edges. 

With this information, the Hamiltonian tour that visits all 

canteens with the shortest distance with respect to the 

available data is as follows 

 
Fig 3. Result using a brute-force algorithm. 

Kantin ATM Center – Eititu – CC Barat – 

Labtek V – GKU B – Lab Biru – Kantin SBM 

– Tunas Padi – Kantin CRCS – Kantin Timur – 

GKU T – Kantin Barrack - Kantin ATM Center 

Distance: 2360 meters 
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Fig 5. The optimal tour that visits all canteens with the 

shortest distance 
 

B. Other method of filling in incomplete edges 

Now we propose another solution to complete missing 

edges in the graph. For every pair of nodes in a graph, 

provided that the graph is connected, there is a path between 

them that has minimal cost. Using this fact, we may construct 

an artificial edge connecting every missing pair of nodes as 

having the same weight as the optimal cost. 

With this method, the Held-Karp algorithm yield the 

following result 

 
Fig 6. Adjacency matrix when shortest-path distance 

method is applied. 

which is the same path produced with the previous method. 

There is no evidence to assert that the results always agree. 

V. DISCUSSION AND REFLECTION 

The algorithms successfully identified the shortest possible 
tour visiting all 12 selected canteen locations on the ITB 
Ganesha campus, which was found to be 2360 meters.  The 
optimal path follows the sequence: Kantin ATM Center → Eititu 
→ CC Barat → Labtek V → GKU B → Lab Biru → Kantin 
SBM → Tunas Padi → Kantin CRCS → Kantin Timur → GKU 
T → Kantin Barrack → Kantin ATM Center.  This provides a 
practical, efficient route for anyone wishing to undertake a 
complete "gastronomy tour" of the campus. 

A key finding from a computational standpoint is the 
dramatic difference in performance between the brute-force and 
Held-Karp algorithms.  While both are exact algorithms that 
yielded the same correct result , the brute-force method's 
superexponential time complexity resulted in a runtime of over 
one minute for just 12 nodes. In contrast, the Held-Karp 
algorithm, which is also exponential, found the solution almost 
instantly. This empirically demonstrates the effect of 
algorithmic improvements to the runtime of exponential 
algorithms. 

VI. APPENDIX 

All code and the collected data is available in the following 
repository: 

https://github.com/rizalkhairan/canteen-tour 

https://github.com/rizalkhairan/canteen-tour
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